Problem 19.36 (RHK)

We consider two point sources S_1 and S_2 , which emit waves of the same frequency and amplitude. The waves start in the same phase, and this phase relation at the sources is maintained throughout time. We consider points P at which r_1 is nearly equal to r_2 . We have to show (a) that the superposition of these two waves gives a wave whose magnitude y_m varies with the position P approximately according to

$$y_m = \frac{2Y}{r} \cos \frac{k}{2} \left(r_1 - r_2 \right),$$

in which $r = (r_1 + r_2)/2$. (b) We then have to show that total cancellation occurs when $r_1 - r_2 = (n + \frac{1}{2})\lambda$, n being any integer, and the total re-enforcement occurs when $r_1 - r_2 = n\lambda$. The locus of points whose difference in distance from two fixed points is a constant is a hyperbola, the fixed points being the foci. Hence each value of n gives a hyperbolic line of constructive interference and a hyperbolic line of destructive

interference. At points at which r_1 and r_2 are not approximately equal (as near the sources), the amplitudes of the waves from S_1 and S_2 differ and cancellations are only partial.

Solution:

We will write functions representing spherical waves of the same frequency and amplitude emitted by sources S_1 and S_2 . We assume that the waves from S_1 and S_2 start in the same phase and this relation is maintained throughout time. These functions are

$$y_1 = \frac{Y}{r_1} \sin k (r_1 - vt),$$

$$y_2 = \frac{Y}{r_2} \sin k (r_2 - vt),$$

where r_1 and r_2 are distances measured from S_1 and S_2 , respectively. The resultant wave at any point in space will be given by the superposition of these two spherical waves. If at some point P the distances r_1 and r_2 are

approximately equal, we may approximate Y/r_1 and Y/r_2

by
$$\frac{Y}{(r_1+r_2)/2}$$
.

In this approximation,

$$y = y_1 + y_2 = \frac{Y}{(r_1 + r_2)/2} (\sin k (r_1 - vt) + \sin k (r_2 - vt))$$

Or,

$$y = \frac{2Y}{r}\cos\frac{k}{2}(r_1 - r_2)\sin k(r - vt),$$

where

$$r = \frac{r_1 + r_2}{2}.$$

We rewrite the resultant wave function in the form

$$y = y_m \sin k (r - vt).$$

Amplitude y_m varies with position P approximately as

$$y_m = \frac{2Y}{r} \cos \frac{k}{2} (r_1 - r_2).$$

From this expression we note that $y_m = 0$, for

$$\left\{ \frac{k}{2} \left(r_1 - r_2 \right) = \left(n + \frac{1}{2} \right) \pi, \text{ or} \right\}, \text{ } n \text{ being any integer.}$$

$$\left\{ \left(r_1 - r_2 \right) = \left(n + \frac{1}{2} \right) \lambda \right\}$$

In this situation there is total cancellation of the waves reaching at P from sources S_1 and S_2 .

And, at points where

$$\frac{k}{2}(r_1 - r_2) = n\pi, \ (k = 2\pi/\lambda),$$
or where
$$(r_1 - r_2) = n\lambda,$$

the two waves reinforce each other and there is constructive interference.

The locus of points whose difference in distance from two fixed points is a constant describes a hyperbola, the fixed points being foci. Hence each value of *n* gives a hyperbolic line of constructive interference and a hyperbolic line of destructive interference.