428.

Problem 34.10 (RHK)

An electron has initial velocity $(12.0\,\hat{j}+15.0\hat{k})\,\mathrm{km\ s^{-1}}$ and a constant acceleration of $(2.00\times10^{12}\ \mathrm{m\ s^{-2}})\hat{i}$ in a region in which uniform electric and magnetic fields are present. If $\hat{B}=400\hat{i}\,\mu\mathrm{T}$, we have to find the electric field \hat{E} .

Solution:

Lorentz force on an electron moving with velocity $\overset{\bullet}{v}$ in electric field $\overset{\bullet}{E}$ and magnetic field $\overset{\bullet}{B}$ is $\overset{\bullet}{F} = e\overset{\bullet}{E} + e\overset{\bullet}{v} \times \overset{\bullet}{B}$.

where,

charge of electron, $e = -1.6 \times 10^{-19}$ C,

mass of electron, $m_e = 9.11 \times 10^{-31} \text{ kg}$,

velocity of electron, $v = (12.0 \hat{j} + 15.0 \hat{k}) \text{ km s}^{-1}$,

and magnetic field, $\vec{B} = 400\hat{i} \ \mu \text{T}$.

Electron in the uniform electric and magnetic fields is moving with acceleration

$${\stackrel{\mathbf{r}}{a}} = (2.00 \times 10^{12} \text{ m s}^{-2})\hat{i}.$$

Therefore, force on the electron will be

$$\vec{F} = m_e \hat{a} = 9.11 \times 10^{-31} \times (2.00 \times 10^{12} \text{ m s}^{-2}) \hat{i} \text{ N}$$

= $1.822 \times 10^{-18} \hat{i} \text{ N}.$

From the Lorentz force equation, we write

$$1.822 \times 10^{-18} \hat{i} \text{ N} = -1.6 \times 10^{-19} \begin{pmatrix} \dot{E} + \\ (12.0 \, \hat{j} + 15.0 \hat{k}) \times 4 \times 10^{-1} \, \hat{i} \text{ m s}^{-1} \text{ T} \end{pmatrix} \text{C}$$

$$= -1.6 \times 10^{-19} \begin{pmatrix} \dot{E} + (-4.8 \hat{k} + 6.0 \, \hat{j}) \text{ m s}^{-1} \text{ T} \end{pmatrix} \text{C}.$$
Or

$$\overset{\mathbf{r}}{E} = \left(-\frac{1.822 \times 10^{-18}}{1.6 \times 10^{-19}} \hat{i} + 4.8 \hat{k} - 6.0 \hat{j} \right) \text{ V m}^{-1}$$

$$= \left(-11.38 \hat{i} - 6.0 \hat{j} + 4.8 \hat{k} \right) \text{ V m}^{-1}.$$