
824.

Problem 54.15 (RHK)

We are asked to pick apart an α particle (⁴He) by removing in sequence, a proton, a neutron, and a proton. We have to calculate (a) the work required for each step, (b) the total binding energy of the α particle, and (c) the binding energy per nucleon. Needed atomic masses are

Solution:

(a)

We will calculate the energy required for picking apart an α particle by removing in sequence, a proton, a neutron, and a proton.

Energy require for removing a proton from an α particle can be found by noting that we are considering the process

 4 He \rightarrow 3 H + p.

The energy required for this process will be

$$(m(^{3}H) + m(^{1}H) - m(^{4}He))c^{2}$$

= (3.016049 + 1.007825 - 4.002603) uc²
= (0.021271)uc² = 0.021271 × 931.5 MeV
= 19.81 MeV.

We next calculate the energy required for removing a neutron from ³H nucleus. That is we consider the process

 $^{3}H \rightarrow ^{2}H + n$.

The energy required for this process will be

$$(m(^{3}H) \rightarrow m(^{2}H) + m_{n})c^{2}$$

= (2.014102 + 1.008665 - 3.016049) u c^{2}
= (0.006718) u c^{2} = 0.006718 × 931.5 MeV
= 6.26 MeV.

We next calculate the energy required for removing a proton from ²H. That is we consider the splitting of a deuteron ²H described by the process

 $^{2}H \rightarrow p+n$.

The energy required for this process will be

$$(1.007825 + 1.008665 - 2.014102)uc^{2}$$

$$=(0.002388)uc^{2}$$

= 2.22 MeV.

(b)

Therefore, the total energy required for splitting an α particle, which is its binding energy, is (19.81+6.26+2.22) MeV = 28.29 MeV.

(c)

The binding energy per nucleon in an α particle, therefore, is 28.29 MeV/4 = 7.07 MeV.

