216.

Problem 23.39 (RHK)

Air at 0.00°C and 1.00 atm pressure has a density of 1.291×10^{-3} g cm⁻³, and the speed of sound is 331 m s⁻¹ at that temperature. We have to compute (a) the value of γ for air and (b) the effective molar mass of air.

Solution:

Data of the problem are

$$P = 1.01 \times 10^5 \text{ Pa},$$

$$\rho = 1.291 \times 10^{-3} \text{ g cm}^{-3} = 1.291 \text{ kg m}^3,$$

T = 273.16 K,

and $v = 331 \text{ m s}^{-1}$.

(a)

Speed of sound, ν , is related to pressure, density and γ for the medium as

$$v = \sqrt{\frac{\gamma P}{\rho}},$$
or
$$\gamma = \frac{v^2 \rho}{P}.$$

$$\gamma = \frac{v^2 \rho}{P}.$$

Substituting the data, we find

$$\gamma = \frac{331^2 \times 1.291}{1.01 \times 10^5} = 1.4$$
.

(b)

For determining the effective molar mass of air, we use the ideal gas equation of state

$$P = \frac{\rho RT}{M},$$
or
$$M = \frac{\rho RT}{P} = \frac{1.291 \times 8.3145 \times 273.16}{1.01 \times 10^5} \text{ kg}$$

$$= 29.0 \text{ g}.$$